一场琳琅满目的跨学科之旅 双曲空间
2022-10-28 16:55:28 来源: 易有料

我们生活在平直的三维欧氏空间,时间空间仿佛均匀展开。但你有没有想过,生活在双曲空间,比如庞加莱圆盘上,会是怎样奇妙的体验?事实上,我们的意识、记忆或许是在双曲空间运转,双曲空间是复杂网络背后的几何,爱因斯坦构建狭义相对论的闵可夫斯基时空也是双曲面模型。双曲空间到底是什么样?为何吸引黎曼、庞加莱、克莱因、莫比乌斯等数学巨擘探索?今天,我们共同开启一场双曲空间的跨学科之旅。

1. 初识双曲空间

难以想象,如果没有画家埃舍尔,多少人将被艰深的双曲几何拒之门外;幸运的是,埃舍尔的系列作品已成为最佳向导,指引我们通向双曲空间。

圆极限III和圆极限IV是埃舍尔创作的两幅木刻(图1):前者的主要形象是各色的鱼,它们有白色的背脊线和不成比例的大眼睛,紧凑排布在一个圆盘上;后者刻画的是天使和恶魔,黑白对立,排列在同样的圆盘上。好好欣赏这些艺术形象吧,不过我们要宣布:圆盘才是具有魔力的,它使所有的鱼都一样大(天使和恶魔也是如此)。

指数增长使得圆盘极不均匀——外部紧密而内部稀疏,这也会影响长度的计算。由于每一条鱼大小相等,因而可用鱼长作为标尺。在图2中,黄色虚线比红色实线经过了更多条鱼(黄线更长),这意味着两点之间的最短距离不再是直线,而是向圆盘中心弯曲的曲线。

三条首尾相接的线段仍然构成三角形,但三角形的内角和不再是180度,而是小于180度。有多小呢,答案是可以趋于0度!

(2)连续的层级。在圆极限IV上,每位白色天使邻接三个黑色恶魔,恶魔也邻接三位天使,从圆盘中心到边缘层层展开。在圆极限III中,鱼的脊线交织,也形成类似的结构。

这是不是让你想到了无穷分叉的树结构?树结构有一个根节点,从根节点往外层层分叉,节点数量随着层数指数增长。更重要的是,圆盘上的距离也近似于树结构上的距离:在圆盘上,两点间的最短路线偏向圆盘中心(图2中的红色实线);在树结构上,两节点的最短距离则要经过它们共同的父节点。

圆盘和树的区别仅在于:树结构的分支互不相通——如果你走错一个分支就必须先返回到上一层,再去探寻另一条分支;而在圆盘上,你既可以按层级行走(沿着分支),也可以径直走过去,路线更加灵活,但距离是相近的。

至此我们已经初识了圆盘模型,它是指数增长的空间,又可以看作连续的树结构,与欧式空间大不相同——感谢埃舍尔的指引,现在可以正式介绍这个“魔力”圆盘了,它全名叫贝尔特拉米-庞加莱圆盘,也常简称庞加莱圆盘,是双曲空间的一种模型。

身在双曲空间会有何种体验呢?举个例子,在庞加莱圆盘上,当一个物体离开你时,它将很快缩小就像突然消失;而当它靠近你时,又会很快变大就像突然闯入——这是一个飘忽而来飘忽而去的世界。

著名的双曲游戏 HyperRogue 就借助这个特性设计场景,可想而知,面对飘忽不定的双曲世界,玩家打怪需要更加绷紧神经。

2. 细辨双曲模型

尽管庞加莱圆盘已经广为人知,但还远非双曲空间的全部。细致地梳理双曲空间,我们会发现有各种不同的双曲模型,以及模型背后巨擘如云、精彩纷呈的非欧几何史。

曲率、镶嵌、海珊瑚

为什么有的空间会呈现指数增长呢?这要从曲率说起。曲率衡量空间的弯曲程度,可分为三种:直线/平面不弯曲,曲率是0,圆/球的弯曲使空间封闭,还有一种弯曲使空间发散。

空间的大小可以用多边形铺贴(在数学中叫做镶嵌)来比较。曲率如何影响空间的大小呢?来看一个例子:下图有三种曲面,左边的是平面,用正六边形可以均匀铺满;中间的是足球形(近似球面),铺满这样的球面要用一些正五边形(黑色)来替代正六边形,从而“节约”了一些面积;而右图中需要填充一些正七边形(黑色)来替代正六边形,此时空间是翘曲的,因而增大了一些面积。

由此可知,正曲率对应的是封闭空间(如球形空间),它使空间收缩(相对于平面);负曲率对应的是开放式无限空间(如双曲空间)。

你可能会问,负曲率能使空间变得多大呢?首先,曲率有大小:翘曲越多,空间扩张就越多。在下图中,每个交点处拼接了5个正方形,翘曲使得曲面多装下了一块正方形(相比于平面)。如果我们翘曲更多,例如在一点拼接6个正方形(实际不一定可行),空间就会变得更大。

其次,空间是连续的,在一点处弯曲,邻近的点也跟着弯曲,从单点扩展到区域,整个空间就呈现为指数增长。许多海洋生物在漫长的演化中学会了将身体舒展成双曲空间,从而极大地扩充了体表面积:例如,海珊瑚的尺寸并不大,但如果沿着它的边缘绕上一圈,经过的距离将千百倍的放大。

至此我们了解了曲率这个重要概念, 而双曲空间正是由曲率来定义:双曲空间是具有负常数曲率的空间。非同寻常的双曲几何,如最短路径是曲线,三角形内角和小于180度等,都是负曲率引起的。如果你继续寻找还能发现更多:在双曲空间里不存在矩形,圆的面积和周长按同样的速度增长,等等。

地图投影

我们已经介绍了庞加莱圆盘和海珊瑚,你可能会疑惑,他们看起来如此不同,真的是同一类空间吗?

这个问题可以类比地图投影来回答:地球只有一个,但是将它展开成地图则有很多种方式。下图展示了常见的三种地图投影——设想地球中心有一盏射灯,光线穿过地球落在投影面上就形成地图。这些地图保留了大部分球面信息,但同时也会产生变形和扭曲。例如第三张地图(著名的墨卡托投影),在南北极附近变形就很大。

与地球-地图投影类似,双曲空间只有一个,而双曲空间模型有很多种。那么猜一猜海珊瑚和庞加莱圆盘谁是真正的双曲空间?答案是——它俩都是投影,而真身并不可见——大数学家希尔伯特证明,双曲空间不能等距的嵌入到3维欧式空间,也就是说我们不可能看到完整的双曲空间。

想象整个双曲空间是困难的, 也是令人兴奋的,它一直可追溯到古希腊数学家欧几里得的平行公设——世世代代的数学家为此追问了上千年,到19世纪终于结出了非欧几何的硕果,使几何学迎来高光时刻。

共形模型

最常见的一类双曲模型叫做共形模型,共形性也被称为保角性,是指图形在投影前后尺寸有缩放,但形状保持不变。庞加莱圆盘就是典型的共形模型,除了保角它还将所有空间映射到一个单位圆盘上,赋予我们上帝视角,这也是它广受欢迎的原因之一。

共形模型的缺点是保角不保距,在埃舍尔的圆极限中,我们已经知道同一条鱼投影在不同点就有不同的大小;不但不保距,共形模型计算距离的方式也比较复杂。

共形圆盘的对称性和层次感不仅令数学家欣喜,也为艺术家所青睐,从埃舍尔画作开始,共形圆盘的造型作品层出不穷。

另一种常见的共形模型是上半平面模型(全称贝尔特拉米-庞加莱半平面,简称半平面模型),它是下部有边界而上部无限开放的半平面。在半平面模型中,自上而下的层级非常显著——类比树结构,不难发现半平面上部无穷远处对应着树的根节点,而下部边缘对应叶子节点。

在半平面模型中,空间的指数增长在下部边界附近更为显著。由于具有共形性,半平面模型上的平动和转动也保持角度不变。

两种共形模型——圆盘和半平面之间可以互相变换:圆盘的边缘对应半平面的下边界,而圆盘中心被映射到半平面上方的无穷远处。这个变换仍然是保角的,叫做莫比乌斯变换。没错,就是发现莫比乌斯环的那位。

圆盘模型和半平面模型是使用最多的共形模型,但实际上共形模型还可以有很多种。黎曼映射原理指出,任何单连通(没有洞)的图形都能共形地映射到单位圆内,反之亦然。也就是说共形模型之间都可以互相变换。

例如Bands模型,使用双曲函数将圆盘展开拉伸,变成一条带子。于是埃舍尔的鱼便可以游到带子上了。

射影模型

另一类双曲空间模型叫做射影圆盘模型,也叫贝尔特拉米-克莱因模型,或克莱因圆盘。克莱因是19世纪德国的数学家,他把那个时代的所有几何统一起来,从群论的角度去分析,从而影响了几何学数十年的发展,这就是著名的“埃尔朗根纲领”。

克莱因模型的优势在于:(1)圆盘上的弦就是双曲空间中的直线(2)圆盘上的距离计算相当简单,仅使用线段比例即可,这也是它得名射影圆盘的原因。

双曲面模型

除了共形模型和射影模型,还有一种重要的模型叫双曲面模型,也叫闵可夫斯基模型。双曲面模型有明确的物理意义,尤其是与狭义相对论密切相关。

双曲面模型是双曲空间的三维等距嵌入模型。等等,希尔伯特不是说过双曲空间无法嵌入到三维欧式空间吗。没错,但是双曲面嵌入的这个空间不是欧式空间,而是闵可夫斯基空间。闵可夫斯基空间和欧式空间的距离定义不同:在闵可夫斯基空间中的居民看来,双曲面是最完美的几何体,就像我们看待球面一样,它是到定点的距离为定长的点集。

除了距离比较反常之外,双曲面模型其实具有很好的对称性,并且符合我们的物理直觉。例如,双曲面模型与过原点的平面相交所成的交线即为测地线。

前面讲了球面可以有很多投影,双曲面是闵可夫斯基空间中的球面,那它也可以有很多投影,于是戏法就来了:从顶点向双曲面投影,在水平面上将得到庞加莱圆盘(注意测地线是曲线)。

3. 跨学科旅行

如果你能读到这里,大概已经被双曲空间的各种模型看得眼花缭乱了,关于几何的部分就谈论到此,接下来坐稳扶好,让我们开启一场与双曲空间有关的跨学科旅行。限于笔者学识,这场旅行只能浮光掠影,希望能引起读者兴趣,收到抛砖引玉之效。

意识幻觉是双曲空间吗

还记得前面提到过,双曲空间是一个飘忽而来飘忽而去的世界吗?仔细想想,大脑有时好像也是这样!时间流逝,过去的事情在记忆中被压缩得很小,想找也找不着,但是有一点线索牵引,它又突然浮现了。

服用迷幻药物后的体验则更奇特(据可信记录,请勿尝试):观察者首先觉得周围的图景更加清晰(就像图片处理中的锐化效果),然后事物会扭曲好像长出尖角,周围的图案会不断重复形成层级,空间容纳了越来越多的物体,并且有窗口通向接连不断的异度空间.…..

责任编辑:zN_2858